Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
2.
PLoS Pathog ; 19(12): e1011817, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38127684

RESUMO

It is increasingly appreciated that pathogens can spread as infectious units constituted by multiple, genetically diverse genomes, also called collective infectious units or genome collectives. However, genetic characterization of the spatial dynamics of collective infectious units in animal hosts is demanding, and it is rarely feasible in humans. Measles virus (MeV), whose spread in lymphatic tissues and airway epithelia relies on collective infectious units, can, in rare cases, cause subacute sclerosing panencephalitis (SSPE), a lethal human brain disease. In different SSPE cases, MeV acquisition of brain tropism has been attributed to mutations affecting either the fusion or the matrix protein, or both, but the overarching mechanism driving brain adaptation is not understood. Here we analyzed MeV RNA from several spatially distinct brain regions of an individual who succumbed to SSPE. Surprisingly, we identified two major MeV genome subpopulations present at variable frequencies in all 15 brain specimens examined. Both genome types accumulated mutations like those shown to favor receptor-independent cell-cell spread in other SSPE cases. Most infected cells carried both genome types, suggesting the possibility of genetic complementation. We cannot definitively chart the history of the spread of this virus in the brain, but several observations suggest that mutant genomes generated in the frontal cortex moved outwards as a collective and diversified. During diversification, mutations affecting the cytoplasmic tails of both viral envelope proteins emerged and fluctuated in frequency across genetic backgrounds, suggesting convergent and potentially frequency-dependent evolution for modulation of fusogenicity. We propose that a collective infectious unit drove MeV pathogenesis in this brain. Re-examination of published data suggests that similar processes may have occurred in other SSPE cases. Our studies provide a primer for analyses of the evolution of collective infectious units of other pathogens that cause lethal disease in humans.


Assuntos
Sarampo , Panencefalite Esclerosante Subaguda , Animais , Humanos , Panencefalite Esclerosante Subaguda/genética , Panencefalite Esclerosante Subaguda/patologia , Vírus do Sarampo/genética , Vírus do Sarampo/metabolismo , Sarampo/genética , Sarampo/metabolismo , Encéfalo/patologia , Tropismo/genética
3.
Vopr Virusol ; 68(5): 361-371, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38156571

RESUMO

Monitoring the circulation of the measles virus and studying its genetic diversity is an important component of the measles elimination program. A methodological approach to molecular genetic studies and their interpretation in the measles surveillance was developed in the early 2000s. During its development, clear areas of circulation of each genotype of the virus were identified, therefore, the determination of viruses' genotypes was proposed to monitor circulation and identify transmission pathways. However, in the future, due to a significant decrease in the number of active genotypes, an approach based on sub-genotyping was proposed: determining not only the genotype of the virus, but also its genetic lineage/genetic variant. The Global Measles and Rubella Laboratory Network (GMRLN) systematically monitors the circulation of the measles virus at the sub-genotypic level, depositing the results in a specialized database MeaNS2. It is this database that is the most complete and reliable source of information about the genetic characteristic of measles viruses. This review presents both historical information and the latest data on the global genetic diversity of the measles virus.


Assuntos
Sarampo , Morbillivirus , Humanos , Vírus do Sarampo/genética , Morbillivirus/genética , Paramyxoviridae/genética , Epidemiologia Molecular/métodos , Sarampo/epidemiologia , Sarampo/genética , Genótipo , Variação Genética
4.
PLoS Pathog ; 19(7): e1011528, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37494386

RESUMO

Subacute sclerosing panencephalitis (SSPE) is a fatal neurodegenerative disease caused by measles virus (MV), which typically develops 7 to 10 years after acute measles. During the incubation period, MV establishes a persistent infection in the brain and accumulates mutations that generate neuropathogenic SSPE virus. The neuropathogenicity is closely associated with enhanced propagation mediated by cell-to-cell fusion in the brain, which is principally regulated by hyperfusogenic mutations of the viral F protein. The molecular mechanisms underlying establishment and maintenance of persistent infection are unclear because it is impractical to isolate viruses before the appearance of clinical signs. In this study, we found that the L and P proteins, components of viral RNA-dependent RNA polymerase (RdRp), of an SSPE virus Kobe-1 strain did not promote but rather attenuated viral neuropathogenicity. Viral RdRp activity corresponded to F protein expression; the suppression of RdRp activity in the Kobe-1 strain because of mutations in the L and P proteins led to restriction of the F protein level, thereby reducing cell-to-cell fusion mediated propagation in neuronal cells and decreasing neuropathogenicity. Therefore, the L and P proteins of Kobe-1 did not contribute to progression of SSPE. Three mutations in the L protein strongly suppressed RdRp activity. Recombinant MV harboring the three mutations limited viral spread in neuronal cells while preventing the release of infectious progeny particles; these changes could support persistent infection by enabling host immune escape and preventing host cell lysis. Therefore, the suppression of RdRp activity is necessary for the persistent infection of the parental MV on the way to transform into Kobe-1 SSPE virus. Because mutations in the genome of an SSPE virus reflect the process of SSPE development, mutation analysis will provide insight into the mechanisms underlying persistent infection.


Assuntos
Sarampo , Doenças Neurodegenerativas , Panencefalite Esclerosante Subaguda , Humanos , Vírus do Sarampo/genética , Vírus SSPE/genética , Vírus SSPE/metabolismo , Panencefalite Esclerosante Subaguda/genética , Panencefalite Esclerosante Subaguda/patologia , Proteínas do Complexo da Replicase Viral/metabolismo , Infecção Persistente , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Sarampo/genética , Sarampo/metabolismo
5.
J Virol ; 96(22): e0131922, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36300942

RESUMO

Many negative-sense RNA viruses, including measles virus (MeV), are thought to carry out much of their viral replication in cytoplasmic membraneless foci known as inclusion bodies (IBs). The mechanisms by which IBs facilitate efficient viral replication remain largely unknown but may involve an intricate network of regulation at the host-virus interface. Viruses are able to modulate such interactions by a variety of strategies including adaptation of their genomes and "hijacking" of host proteins. The latter possibility broadens the molecular reservoir available for a virus to enhance its replication and/or antagonize host antiviral responses. Here, we show that the cellular 5'-3' exoribonuclease, XRN1, is a host protein hijacked by MeV. We found that upon MeV infection, XRN1 is translocated to cytoplasmic IBs where it acts in a proviral manner by preventing the accumulation of double-stranded RNA (dsRNA) within the IBs. This leads to the suppression of the dsRNA-induced innate immune responses mediated via the protein kinase R (PKR)-integrated stress response (ISR) pathway. IMPORTANCE Measles virus remains a major global health threat due to its high transmissibility and significant morbidity in children and immunocompromised individuals. Although there is an effective vaccine against MeV, a large population in the world remains without access to the vaccine, contributing to more than 7,000,000 measles cases and 60,000 measles deaths in 2020 (CDC). For negative-sense RNA viruses including MeV, one active research area is the exploration of virus-host interactions occurring at cytoplasmic IBs where viral replication takes place. In this study we present evidence suggesting a model in which MeV IBs antagonize host innate immunity by recruiting XRN1 to reduce dsRNA accumulation and subsequent PKR kinase activation/ISR induction. In the absence of XRN1, the increased dsRNA level acts as a potent activator of the antiviral PKR/ISR pathway leading to suppression of global cap-dependent mRNA translation and inhibition of viral replication.


Assuntos
Exorribonucleases , Sarampo , Proteínas Associadas aos Microtúbulos , Replicação Viral , Humanos , eIF-2 Quinase/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Sarampo/genética , Sarampo/virologia , Vírus do Sarampo/genética , Vírus do Sarampo/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Quinases/metabolismo , Provírus/genética , RNA de Cadeia Dupla , Corpos de Inclusão Viral
6.
Saudi Med J ; 42(11): 1229-1236, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34732556

RESUMO

OBJECTIVES: To detect single nucleotide polymorphism in toll-like receptor 2 (TLR2) gene in complicated cases of measles, in order to understand the genetic basis of complex human immune responses against measles complications. METHODS: A total of 100 children consisted of 50 measles complicated cases while rest were gender matched disease-free individuals who served as controls for this study. Patient demographic data and clinical information were recorded on a separate pre-designed model form. All exonic regions of TLR2 gene of the patients and control samples were amplified through polymerase chain reaction. Various in-silico mutation verification tools like protein variation effect analyzer, MUPRO, sorting intolerant from tolerant, functional analysis through hidden Markov models, and polymorphism phenotyping v2 to study the effect of novel non-synonymous polymorphism on structure and function of TLR2 protein. RESULTS: Synonymous and novel non-synonymous polymorphisms were identified in measles complicated cases. Among these, rs1816702 was marked to 5 untranslated region section of TLR2 gene, while rs3804099 and rs3804100 were identified in the coding region. Novel non-synonymous polymorphisms were shown in the coding region of TLR2 gene. No significant association was established between the observed genetic polymorphisms and measles complications. However, rs3804100 increased the risk of lower respiratory tract infection. CONCLUSION: The overall impact of novel non-synonymous polymorphism of TLR2 protein structure and functions was neutral and tolerated.


Assuntos
Sarampo , Receptor 2 Toll-Like , Estudos de Casos e Controles , Criança , Predisposição Genética para Doença , Humanos , Sarampo/genética , Paquistão , Polimorfismo de Nucleotídeo Único , Centros de Atenção Terciária , Receptor 2 Toll-Like/genética
7.
PLoS One ; 16(9): e0255663, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34506497

RESUMO

Measles outbreaks escalated globally despite worldwide elimination efforts. Molecular epidemiological investigations utilizing partial measles virus (MeV) genomes are challenged by reduction in global genotypes and low evolutionary rates. Greater resolution was reached using MeV complete genomes, however time and costs limit the application to numerous samples. We developed an approach to unbiasedly sequence complete MeV genomes directly from patient urine samples. Samples were enriched for MeV using filtration or nucleases and the minimal number of sequence reads to allocate per sample based on its MeV content was assessed using in-silico reduction of sequencing depth. Application of limited-resource sequencing to treated MeV-positive samples demonstrated that 1-5 million sequences for samples with high/medium MeV quantities and 10-15 million sequences for samples with lower MeV quantities are sufficient to obtain >98% MeV genome coverage and over X50 average depth. This approach enables real-time high-resolution molecular epidemiological investigations of large-scale MeV outbreaks.


Assuntos
Surtos de Doenças/estatística & dados numéricos , Genoma Viral , Vírus do Sarampo/classificação , Vírus do Sarampo/genética , Sarampo/epidemiologia , RNA Viral/genética , Análise de Sequência de DNA/métodos , Genótipo , Humanos , Israel/epidemiologia , Sarampo/genética , Sarampo/virologia , Vírus do Sarampo/isolamento & purificação , Epidemiologia Molecular , Filogenia
8.
PLoS Pathog ; 17(8): e1009458, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34383863

RESUMO

Measles virus (MeV) is the most contagious human virus. Unlike most respiratory viruses, MeV does not directly infect epithelial cells upon entry in a new host. MeV traverses the epithelium within immune cells that carry it to lymphatic organs where amplification occurs. Infected immune cells then synchronously deliver large amounts of virus to the airways. However, our understanding of MeV replication in airway epithelia is limited. To model it, we use well-differentiated primary cultures of human airway epithelial cells (HAE) from lung donors. In HAE, MeV spreads directly cell-to-cell forming infectious centers that grow for ~3-5 days, are stable for a few days, and then disappear. Transepithelial electrical resistance remains intact during the entire course of HAE infection, thus we hypothesized that MeV infectious centers may dislodge while epithelial function is preserved. After documenting by confocal microscopy that infectious centers progressively detach from HAE, we recovered apical washes and separated cell-associated from cell-free virus by centrifugation. Virus titers were about 10 times higher in the cell-associated fraction than in the supernatant. In dislodged infectious centers, ciliary beating persisted, and apoptotic markers were not readily detected, suggesting that they retain functional metabolism. Cell-associated MeV infected primary human monocyte-derived macrophages, which models the first stage of infection in a new host. Single-cell RNA sequencing identified wound healing, cell growth, and cell differentiation as biological processes relevant for infectious center dislodging. 5-ethynyl-2'-deoxyuridine (EdU) staining located proliferating cells underneath infectious centers. Thus, cells located below infectious centers divide and differentiate to repair the dislodged infected epithelial patch. As an extension of these studies, we postulate that expulsion of infectious centers through coughing and sneezing could contribute to MeV's strikingly high reproductive number by allowing the virus to survive longer in the environment and by delivering a high infectious dose to the next host.


Assuntos
Células Epiteliais/virologia , Macrófagos/virologia , Vírus do Sarampo/patogenicidade , Sarampo/virologia , Sistema Respiratório/virologia , Internalização do Vírus , Replicação Viral , Células Cultivadas , Células Epiteliais/metabolismo , Humanos , Macrófagos/metabolismo , Sarampo/genética , Sarampo/metabolismo , RNA-Seq , Sistema Respiratório/metabolismo , Análise de Célula Única , Transcriptoma
9.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903248

RESUMO

Measles virus (MeV) is resurgent and caused >200,000 deaths in 2019. MeV infection can establish a chronic latent infection of the brain that can recrudesce months to years after recovery from the primary infection. Recrudescent MeV leads to fatal subacute sclerosing panencephalitis (SSPE) or measles inclusion body encephalitis (MIBE) as the virus spreads across multiple brain regions. Most clinical isolates of SSPE/MIBE strains show mutations in the fusion (F) gene that result in a hyperfusogenic phenotype in vitro and allow for efficient spread in primary human neurons. Wild-type MeV receptor-binding protein is indispensable for manifesting these mutant F phenotypes, even though neurons lack canonical MeV receptors (CD150/SLAMF1 or nectin-4). How such hyperfusogenic F mutants are selected and whether they confer a fitness advantage for efficient neuronal spread is unresolved. To better understand the fitness landscape that allows for the selection of such hyperfusogenic F mutants, we conducted a screen of ≥3.1 × 105 MeV-F point mutants in their genomic context. We rescued and amplified our genomic MeV-F mutant libraries in BSR-T7 cells under conditions in which MeV-F-T461I (a known SSPE mutant), but not wild-type MeV, can spread. We recovered known SSPE mutants but also characterized at least 15 hyperfusogenic F mutations with an SSPE phenotype. Structural mapping of these mutants onto the prefusion MeV-F trimer confirm and extend our understanding of the F regulatory domains in MeV-F. Our list of hyperfusogenic F mutants is a valuable resource for future studies into MeV neuropathogenesis and the regulation of paramyxovirus F.


Assuntos
Vírus do Sarampo/genética , Sarampo/genética , Panencefalite Esclerosante Subaguda/genética , Proteínas Virais de Fusão/genética , Substituição de Aminoácidos/genética , Animais , Encéfalo/patologia , Encéfalo/virologia , Chlorocebus aethiops , Humanos , Sarampo/patologia , Sarampo/virologia , Vírus do Sarampo/patogenicidade , Mutação/genética , Neurônios/patologia , Neurônios/virologia , Panencefalite Esclerosante Subaguda/patologia , Panencefalite Esclerosante Subaguda/virologia , Células Vero
10.
Curr Opin Virol ; 41: 52-58, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32413678

RESUMO

Measles virus, a member of the genus Morbillivirus, is highly contagious and still shows considerable mortality with over 100000 deaths annually, although efficient attenuated vaccines exist. Recent studies of measles virus haemagglutinin (MeV-H) and its receptor, including crystallographic and electron microscopic structural analyses combined with functional assays, have revealed how the MeV-H protein recognizes its cognate receptors, SLAM and Nectin-4, and how the glycan shield ensures effective vaccination. In addition, the crystal structure of the MeV-F protein indicated its similarity to those of other paramyxoviruses. Taking into account these data, several models of viral entry/membrane fusion of measles viruses and related paramyxoviruses have been proposed. Furthermore, anti-MeV-F inhibitors targeted to specific regions to inhibit MeV-F protein activation were reported, with potency for preventing MeV infection. The inhibitors targeted for entry events may potentially be applied to treatment of MeV-derived diseases, although escape mutations and drug profiles should be considered.


Assuntos
Hemaglutininas Virais/química , Vírus do Sarampo/fisiologia , Sarampo/virologia , Internalização do Vírus , Animais , Hemaglutininas Virais/genética , Hemaglutininas Virais/metabolismo , Humanos , Sarampo/genética , Sarampo/metabolismo , Vírus do Sarampo/química , Vírus do Sarampo/genética , Ligação Proteica , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo
11.
Curr Opin Virol ; 41: 18-30, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32330821

RESUMO

The innate immune system is the first line of defense against infections with pathogens. It provides direct antiviral mechanisms to suppress the viral life cycle at multiple steps. Innate immune cells are specialized to recognize pathogen infections and activate and modulate adaptive immune responses through antigen presentation, co-stimulation and release of cytokines and chemokines. Measles virus, which causes long-lasting immunosuppression and immune-amnesia, primarily infects and replicates in innate and adaptive immune cells, such as dendritic cells, macrophages, T cells and B cells. To achieve efficient replication, measles virus has evolved multiple mechanisms to manipulate innate immune responses by both stimulation and blocking of specific signals necessary for antiviral immunity. This review will highlight our current knowledge in this and address open questions.


Assuntos
Imunidade Inata , Vírus do Sarampo/imunologia , Sarampo/imunologia , Animais , Citocinas/genética , Citocinas/imunologia , Interações Hospedeiro-Patógeno , Humanos , Sarampo/genética , Sarampo/virologia , Vírus do Sarampo/genética , Vírus do Sarampo/fisiologia , Replicação Viral
12.
BMJ Case Rep ; 12(12)2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31796443

RESUMO

A 40-year-old British man presented to the emergency department for the second time in 10 days following a 2-week holiday in Thailand with malaise, bilateral conjunctivitis and a morbilliform rash. He had previously seen his general practitioner and ophthalmology and was diagnosed with conjunctivitis. We confirmed measles following RNA detection on a mouth swab. Four days after admission he developed abdominal pain and a CT abdomen demonstrated acute appendicitis with large appendicoliths. A perforated appendix was identified intraoperatively. Measles RNA was detected in the resected appendix. Preoperatively he developed hypoxia with right upper lobe changes seen on a CT pulmonary angiogram. Bronchoalveolar lavage performed in theatre isolated measles RNA at high level, consistent with measles pneumonitis. He required ventilatory support in the intensive care unit and was also treated with intravenous antibiotics. He made a complete recovery.


Assuntos
Apendicite/diagnóstico , Sarampo/diagnóstico , Pneumonia Viral/etiologia , Adulto , Apendicite/microbiologia , Apendicite/cirurgia , Apendicite/virologia , Busca de Comunicante/métodos , Diagnóstico Tardio , Humanos , Masculino , Sarampo/complicações , Sarampo/genética , Pneumonia Viral/diagnóstico por imagem , Pneumonia Viral/terapia , Respiração Artificial , Salmonella/isolamento & purificação
13.
Viruses ; 11(8)2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430904

RESUMO

Measles virus (MV) and canine distemper virus (CDV) are highly contagious and deadly, forming part of the morbillivirus genus. The receptor recognition by morbillivirus hemagglutinin (H) is important for determining tissue tropism and host range. Recent reports largely urge caution as regards to the potential expansion of host specificities of morbilliviruses. Nonetheless, the receptor-binding potential in different species of morbillivirus H proteins is largely unknown. Herein, we show that the CDV-H protein binds to the dog signaling lymphocyte activation molecule (SLAM), but not to the human, tamarin, or mouse SLAM. In contrast, MV-H can bind to human, tamarin and dog SLAM, but not to that of mice. Notably, MV binding to dog SLAM showed a lower affinity and faster kinetics than that of human SLAM, and MV exhibits a similar entry activity in dog SLAM- and human SLAM-expressing Vero cells. The mutagenesis study using a fusion assay, based on the MV-H-SLAM complex structure, revealed differences in tolerance for the receptor specificity between MV-H and CDV-H. These results provide insights into H-SLAM specificity related to potential host expansion.


Assuntos
Vírus da Cinomose Canina/metabolismo , Cinomose/metabolismo , Hemaglutininas Virais/metabolismo , Vírus do Sarampo/metabolismo , Sarampo/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Animais , Cinomose/genética , Cinomose/virologia , Vírus da Cinomose Canina/genética , Cães , Hemaglutininas Virais/genética , Humanos , Sarampo/genética , Sarampo/virologia , Vírus do Sarampo/genética , Camundongos , Ligação Proteica , Receptores Virais/genética , Receptores Virais/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Especificidade da Espécie
14.
Arch Virol ; 164(2): 439-446, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30390151

RESUMO

Measles virus (MeV) first infects immune cells in the respiratory tract of a human host, spreads to lymphoid organs throughout the body, and finally enters and grows in respiratory epithelial cells before being released and transmitted to the next host. Thus, efficient growth in respiratory epithelial cells is important for the person-to-person transmission of MeV. Upon viral entry, host cells detect viral nucleic acids and produce interferons (IFNs) to control viral growth. Type I (IFN-α/ß) and type III (IFN-λ) IFNs have largely common induction and signaling mechanisms and stimulate expression of similar target genes but utilize distinct receptors. To determine the relative contributions of type I and type III IFNs to the control of MeV growth in epithelial cells, we examined the growth of MeV and that of its mutants lacking either type I or type III IFN receptor in the human lung epithelial cell line H358. Our results revealed that both type I and type III IFNs are required to restrict MeV growth in H358 cells and that the induction of type III as well as type I IFNs was increased in the absence of the MeV nonstructural V protein.


Assuntos
Células Epiteliais/imunologia , Interferon Tipo I/imunologia , Interferons/imunologia , Vírus do Sarampo/crescimento & desenvolvimento , Sarampo/imunologia , Linhagem Celular , Células Epiteliais/virologia , Humanos , Interferon Tipo I/genética , Interferons/genética , Pulmão/citologia , Pulmão/imunologia , Pulmão/virologia , Sarampo/genética , Sarampo/virologia , Vírus do Sarampo/genética , Vírus do Sarampo/fisiologia , Interferon lambda
15.
Int J Mol Med ; 42(1): 149-160, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29717769

RESUMO

The aim of the present study was to reveal the potential molecular mechanisms of microsatellite instability (MSI) on the prognosis of gastric cancer (GC). The investigation was performed based on an RNAseq expression profiling dataset downloaded from The Cancer Genome Atlas, including 64 high­level MSI (MSI­H) GC samples, 44 low­level MSI (MSI­L) GC samples and 187 stable microsatellite (MSI­S) GC samples. Differentially expressed genes (DEGs) were identified between the MSI­H, MSI­L and MSI­S samples. Pathway enrichment analysis was performed for the identified DEGs and the pathway deviation scores of the significant enrichment pathways were calculated. A Multi­Layer Perceptron (MLP) classifier, based on the different pathways associated with the MSI statuses was constructed for predicting the outcome of patients with GC, which was validated in another independent dataset. A total of 190 DEGs were selected between the MSI­H, MSI­L and MSI­S samples. The MLP classifier was established based on the deviation scores of 10 significant pathways, among which antigen processing and presentation, and inflammatory bowel disease pathways were significantly enriched with HLA­DRB5, HLA­DMA, HLA­DQA1 and HLA­DRA; the measles, toxoplasmosis and herpes simplex infection pathways were significantly enriched with Janus kinase 2 (JAK2), caspase­8 (CASP8) and Fas. The classifier performed well on an independent validation set with 100 GC samples. Taken together, the results indicated that MSI status may affect GC prognosis, partly through the antigen processing and presentation, inflammatory bowel disease, measles, toxoplasmosis and herpes simplex infection pathways. HLA­DRB5, HLA­DMA, HLA­DQA1, HLA­DRA, JAK2, CASP8 and Fas may be predictive factors for prognosis in GC.


Assuntos
Instabilidade de Microssatélites , Transdução de Sinais/genética , Neoplasias Gástricas/genética , Idoso , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Leishmaniose/genética , Masculino , Sarampo/genética , Anotação de Sequência Molecular , Redes Neurais de Computação , Prognóstico , Curva ROC , Reprodutibilidade dos Testes , Análise de Sobrevida , Resultado do Tratamento
16.
J Virol ; 92(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29437959

RESUMO

The paramyxovirus replication machinery comprises the viral large (L) protein and phosphoprotein (P-protein) in addition to the nucleocapsid (N) protein, which encapsidates the single-stranded RNA genome. Common to paramyxovirus N proteins is a C-terminal tail (Ntail). The mechanistic role and relevance for virus replication of the structurally disordered central Ntail section are unknown. Focusing initially on members of the Morbillivirus genus, a series of measles virus (MeV) and canine distemper virus (CDV) N proteins were generated with internal deletions in the unstructured tail section. N proteins with large tail truncations remained bioactive in mono- and polycistronic minireplicon assays and supported efficient replication of recombinant viruses. Bioactivity of Ntail mutants extended to N proteins derived from highly pathogenic Nipah virus. To probe an effect of Ntail truncations on viral pathogenesis, recombinant CDVs were analyzed in a lethal CDV/ferret model of morbillivirus disease. The recombinant viruses displayed different stages of attenuation ranging from ameliorated clinical symptoms to complete survival of infected animals, depending on the molecular nature of the Ntail truncation. Reinfection of surviving animals with pathogenic CDV revealed robust protection against a lethal challenge. The highly attenuated virus was genetically stable after ex vivo passaging and recovery from infected animals. Mechanistically, gradual viral attenuation coincided with stepwise altered viral transcriptase activity in infected cells. These results identify the central Ntail section as a determinant for viral pathogenesis and establish a novel platform to engineer gradual virus attenuation for next-generation paramyxovirus vaccine design.IMPORTANCE Investigating the role of the paramyxovirus N protein tail domain (Ntail) in virus replication, we demonstrated in this study that the structurally disordered central Ntail region is a determinant for viral pathogenesis. We show that internal deletions in this Ntail region of up to 55 amino acids in length are compatible with efficient replication of recombinant viruses in cell culture but result in gradual viral attenuation in a lethal canine distemper virus (CDV)/ferret model. Mechanistically, we demonstrate a role of the intact Ntail region in the regulation of viral transcriptase activity. Recombinant viruses with Ntail truncations induce protective immunity against lethal challenge of ferrets with pathogenic CDV. This identification of the unstructured central Ntail domain as a nonessential paramyxovirus pathogenesis factor establishes a foundation for harnessing Ntail truncations for vaccine engineering against emerging and reemerging members of the paramyxovirus family.


Assuntos
Vírus da Cinomose Canina/fisiologia , Vírus do Sarampo/fisiologia , Sarampo/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Replicação Viral/fisiologia , Animais , Chlorocebus aethiops , Cricetinae , Modelos Animais de Doenças , Furões , Células HeLa , Humanos , Sarampo/genética , Proteínas do Nucleocapsídeo/genética , Domínios Proteicos
17.
J Virol ; 92(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29298883

RESUMO

Measles virus (MV) usually causes acute infection but in rare cases persists in the brain, resulting in subacute sclerosing panencephalitis (SSPE). Since human neurons, an important target affected in the disease, do not express the known MV receptors (signaling lymphocyte activation molecule [SLAM] and nectin 4), how MV infects neurons and spreads between them is unknown. Recent studies have shown that many virus strains isolated from SSPE patients possess substitutions in the extracellular domain of the fusion (F) protein which confer enhanced fusion activity. Hyperfusogenic viruses with such mutations, unlike the wild-type MV, can induce cell-cell fusion even in SLAM- and nectin 4-negative cells and spread efficiently in human primary neurons and the brains of animal models. We show here that a hyperfusogenic mutant MV, IC323-F(T461I)-EGFP (IC323 with a fusion-enhancing T461I substitution in the F protein and expressing enhanced green fluorescent protein), but not the wild-type MV, spreads in differentiated NT2 cells, a widely used human neuron model. Confocal time-lapse imaging revealed the cell-to-cell spread of IC323-F(T461I)-EGFP between NT2 neurons without syncytium formation. The production of virus particles was strongly suppressed in NT2 neurons, also supporting cell-to-cell viral transmission. The spread of IC323-F(T461I)-EGFP was inhibited by a fusion inhibitor peptide as well as by some but not all of the anti-hemagglutinin antibodies which neutralize SLAM- or nectin-4-dependent MV infection, suggesting the presence of a distinct neuronal receptor. Our results indicate that MV spreads in a cell-to-cell manner between human neurons without causing syncytium formation and that the spread is dependent on the hyperfusogenic F protein, the hemagglutinin, and the putative neuronal receptor for MV.IMPORTANCE Measles virus (MV), in rare cases, persists in the human central nervous system (CNS) and causes subacute sclerosing panencephalitis (SSPE) several years after acute infection. This neurological complication is almost always fatal, and there is currently no effective treatment for it. Mechanisms by which MV invades the CNS and causes the disease remain to be elucidated. We have previously shown that fusion-enhancing substitutions in the fusion protein of MVs isolated from SSPE patients contribute to MV spread in neurons. In this study, we demonstrate that MV bearing the hyperfusogenic mutant fusion protein spreads between human neurons in a cell-to-cell manner. Spread of the virus was inhibited by a fusion inhibitor peptide and antibodies against the MV hemagglutinin, indicating that both the hemagglutinin and hyperfusogenic fusion protein play important roles in MV spread between human neurons. The findings help us better understand the disease process of SSPE.


Assuntos
Hemaglutininas Virais/metabolismo , Vírus do Sarampo/metabolismo , Sarampo/transmissão , Neurônios/metabolismo , Panencefalite Esclerosante Subaguda/transmissão , Proteínas Virais de Fusão/metabolismo , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Chlorocebus aethiops , Hemaglutininas Virais/genética , Humanos , Sarampo/genética , Sarampo/metabolismo , Sarampo/patologia , Vírus do Sarampo/genética , Vírus do Sarampo/patogenicidade , Neurônios/patologia , Neurônios/virologia , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Panencefalite Esclerosante Subaguda/genética , Panencefalite Esclerosante Subaguda/metabolismo , Panencefalite Esclerosante Subaguda/patologia , Células Vero , Proteínas Virais de Fusão/genética
18.
PLoS One ; 12(10): e0187077, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29073265

RESUMO

Measles virus (MV) infects a variety of lymphoid and non-lymphoid peripheral organs. However, in rare cases, the virus can persistently infect cells within the central nervous system. Although some of the factors that allow MV to persist are known, the contribution of host cell-encoded microRNAs (miRNA) have not been described. MiRNAs are a class of noncoding RNAs transcribed from genomes of all multicellular organisms and some viruses, which regulate gene expression in a sequence-specific manner. We have studied the contribution of host cell-encoded miRNAs to the establishment of MV persistent infection in human neuroblastoma cells. Persistent MV infection was accompanied by differences in the expression profile and levels of several host cell-encoded microRNAs as compared to uninfected cells. MV persistence infection of a human neuroblastoma cell line (UKF-NB-MV), exhibit high miRNA-124 expression, and reduced expression of cyclin dependent kinase 6 (CDK6), a known target of miRNA-124, resulting in slower cell division but not cell death. By contrast, acute MV infection of UKF-NB cells did not result in increased miRNA-124 levels or CDK6 reduction. Ectopic overexpression of miRNA-124 affected cell viability only in UKF-NB-MV cells, causing cell death; implying that miRNA-124 over expression can sensitize cells to death only in the presence of MV persistent infection. To determine if miRNA-124 directly contributes to the establishment of MV persistence, UKF-NB cells overexpressing miRNA-124 were acutely infected, resulting in establishment of persistently infected colonies. We propose that miRNA-124 triggers a CDK6-dependent decrease in cell proliferation, which facilitates the establishment of MV persistence in neuroblastoma cells. To our knowledge, this is the first report to describe the role of a specific miRNA in MV persistence.


Assuntos
Divisão Celular/genética , Sarampo/genética , MicroRNAs/genética , Neuroblastoma/patologia , Apoptose/genética , Linhagem Celular Tumoral , Quinase 6 Dependente de Ciclina/metabolismo , Regulação para Baixo , Humanos , Sarampo/patologia
19.
Nat Commun ; 8(1): 599, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28928442

RESUMO

Infectious diseases have a profound impact on our health and many studies suggest that host genetics play a major role in the pathogenesis of most of them. We perform 23 genome-wide association studies for common infections and infection-associated procedures, including chickenpox, shingles, cold sores, mononucleosis, mumps, hepatitis B, plantar warts, positive tuberculosis test results, strep throat, scarlet fever, pneumonia, bacterial meningitis, yeast infections, urinary tract infections, tonsillectomy, childhood ear infections, myringotomy, measles, hepatitis A, rheumatic fever, common colds, rubella and chronic sinus infection, in over 200,000 individuals of European ancestry. We detect 59 genome-wide significant (P < 5 × 10-8) associations in genes with key roles in immunity and embryonic development. We apply fine-mapping analysis to dissect associations in the human leukocyte antigen region, which suggests important roles of specific amino acid polymorphisms in the antigen-binding clefts. Our findings provide an important step toward dissecting the host genetic architecture of response to common infections.Susceptibility to infectious diseases is, among others, influenced by the genetic landscape of the host. Here, Tian and colleagues perform genome-wide association studies for 23 common infections and find 59 risk loci for 17 of these, both within the HLA region and non-HLA loci.


Assuntos
Antígenos HLA/genética , Infecções/genética , População Branca/genética , Candidíase Vulvovaginal/genética , Estudos de Casos e Controles , Varicela/genética , Doença Crônica , Resfriado Comum/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Hepatite A/genética , Hepatite B/genética , Herpes Labial/genética , Herpes Zoster/genética , Humanos , Mononucleose Infecciosa/genética , Masculino , Sarampo/genética , Meningites Bacterianas/genética , Ventilação da Orelha Média , Caxumba/genética , Otite Média/genética , Otite Média/cirurgia , Faringite/genética , Pneumonia/genética , Febre Reumática/genética , Rubéola (Sarampo Alemão)/genética , Escarlatina/genética , Sinusite/genética , Infecções Estreptocócicas/genética , Tonsilectomia , Tonsilite/genética , Tonsilite/cirurgia , Teste Tuberculínico , Tuberculose/diagnóstico , Tuberculose/genética , Infecções Urinárias/genética , Verrugas/genética
20.
PLoS One ; 12(2): e0171261, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28158231

RESUMO

Human antibody response to measles vaccine is highly variable in the population. Host genes contribute to inter-individual antibody response variation. The killer cell immunoglobulin-like receptors (KIR) are recognized to interact with HLA molecules and possibly influence humoral immune response to viral antigens. To expand on and improve our previous work with HLA genes, and to explore the genetic contribution of KIR genes to the inter-individual variability in measles vaccine-induced antibody responses, we performed a large population-based study in 2,506 healthy immunized subjects (ages 11 to 41 years) to identify HLA and KIR associations with measles vaccine-induced neutralizing antibodies. After correcting for the large number of statistical tests of allele effects on measles-specific neutralizing antibody titers, no statistically significant associations were found for either HLA or KIR loci. However, suggestive associations worthy of follow-up in other cohorts include B*57:01, DQB1*06:02, and DRB1*15:05 alleles. Specifically, the B*57:01 allele (1,040 mIU/mL; p = 0.0002) was suggestive of an association with lower measles antibody titer. In contrast, the DQB1*06:02 (1,349 mIU/mL; p = 0.0004) and DRB1*15:05 (2,547 mIU/mL; p = 0.0004) alleles were suggestive of an association with higher measles antibodies. Notably, the associations with KIR genotypes were strongly nonsignificant, suggesting that KIR loci in terms of copy number and haplotypes are not likely to play a major role in antibody response to measles vaccination. These findings refine our knowledge of the role of HLA and KIR alleles in measles vaccine-induced immunity.


Assuntos
Estudos de Associação Genética , Genótipo , Antígenos de Histocompatibilidade/genética , Vacina contra Sarampo/imunologia , Vírus do Sarampo/imunologia , Sarampo/genética , Sarampo/imunologia , Receptores KIR/genética , Adolescente , Adulto , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos/genética , Formação de Anticorpos/imunologia , Criança , Feminino , Humanos , Masculino , Sarampo/epidemiologia , Sarampo/prevenção & controle , Vigilância da População , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...